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Large-Scale Calculations for 
Hadron Spectroscopy 

Claudio  Rebbi  ~ 

Some recent Monte Carlo calculations for quantum chromodynamics, perfor- 
med on Euclidean lattices of rather large extent, are reviewed. The purpose of 
the calculations is to provide accurate determinations of quantities, such as 
interquark potentials or mass eigenvalues, which are relevant for hadronic spec- 
troscopy. Results obtained in quenched QCD on 163 x 32 lattices are illustrated, 
and a discussion of computational resources and techniques required for the 
calculations is presented. 
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It was a great pleasure for me to give a talk at the meeting, at which the 
papers in this issue were presented, dedicated to Professor Metropolis, to 
whom all of us working on computer simulations owe so much. 

I first heard about the Metropolis method many years ago at a con- 
ference held at the International Centre for Theoretical Physics in Trieste. I 
was not doing research in the field of computer simulations at the time, 
and I do not even remember the year or what exactly the conference was 
about. I just attended a few talks out of general interest, and I heard about 
this method for approximating the weighted integral over configuration 
space by letting particles perform random moves and then accepting or 
rejecting the moves with a probability related to the variation of the weight 
factor. It appeared to me a very clever algorithm, and it stayed in the 
background of my mind. So when several years later at BNL I heard from 
Robert Swendsen about his studies of critical behavior of spin systems, the 
Metropolis method he was using for the computer simulations sounded 
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familiar and natural. It was then that Mike Creutz, Laurence Jacobs, and I 
began to do computer studies of the simplest lattice gauge models. 

A long time has passed since that conference at the ICTP, and the 
power of computational devices has increased enormously, to the point 
that computer simulations can be used to obtain rather accurate results for 
many problems in quantum fields theories. The numerical study of quan- 
tum field theories represents one of the most demanding applications of 
computers. This follows from the four-dimensional nature of the problem 
and the very large number of degrees of freedom that realistic simulations 
have to contend with. 

The most important applications of Monte Carlo simulations to quan- 
tum field theories relate to the theory of strong interactions known as 
quantum chromodynamics (QCD) in which, when the theory is formulated 
on a Euclidan lattice, the dynamical variables are gluon fields U ~ i.e., finite x ,  

elements of the SU(3) group of color transformations, defined over the 
oriented links of the lattice, and quark fields ~ x ~ x ,  transforming 
according to the fundamental representation of the color group, defined 
over the sites of the lattice. (~) The goal is to evaluate integrals 

l f l-l dU~ I~ d~txd~gx O( U, ~, ~g) e - sG- su ( O ) = Z  
x,, x (1) 

= f I1 dU~ I1 dgx d~tx e Z SG SM 

X,IA X 

which give the observables of the theory. The action S in (1) is the sum of 
two terms, the gauge field action Sc and the quark field action SM. There 
is a large degree of freedom in formulating a lattice action, although all 
choices should produce the same continuum limit. A typical form for the 
gauge field action is (1 ) 

Sa=-~7 ~. 1--~RetrU~ ~ (2) 

11<v 

rT~trTU* ff~ Nu is the lattice spacing, and g is the where U~ v = v x vx + ~a vx + ;~ --x, a 
unrenormalized coupling constant. (In numerical calculations one fre- 
quently parametrizes results in terms of a coupling parameter f l=  6/g 2 
rather than g). The action of the quark field is a bilinear function of the 
quark variables 

~ x O ( U ) x y ~ y + m ~  ~tx~ x (3) 
?r x 

connecting quark fields at neighboring sites through the kinetic term 
D(U)xy. The kinetic term contains factors of U S required to make the 
couplings between neighboring quark fields gauge-invariant. These factors 
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couple the ~u fields to the U field, just as in the continuum theory the 
kinetic term ~PTU(3~, - igAu) 7 s couples matter fields to gauge fields through 
the covariant derivatives. 

The lattice spacing a is related to the (unrenormalized) coupling con- 
stant g in (2) by the renormalization procedure and, in asymptotically free 
theories such as QCD, the continuum limit a -~ 0 is approached for g --* 0. 
In actual QCD calculations one finds that a reasonably good 
approximation to the continuum limit is achieved for many observables 
when a~0 .1  Fm, which is not unreasonable since 1 Fm is a typical scale 
for strong interactions. This, however, implies that lattices extending for at 
least 10 sites in each direction should be used for realistic calculations. To 
see what this implies in terms of computational requirements, let us con- 
sider explicitly a lattice with 163 x 32 sites, such as the one used to obtain 
some of the results which ! describe later ~2 5) and which represents one of 
the largest sizes utilized up to now for QCD calculations. A lattice of this 
size involves 4• variables. Since it is convenient to 
represent these in memory in explicit 3 • 3 matrix notation, over 9 million 
real variables must be stored in memory. About the simulation procedure, 
the typical upgrading step in the Metropolis algorithm, U~ ~ U~', requires 
approximately 4000 arithmetic operations if one is content with repro- 
ducing the exp { -  $6 } distribution, neglecting the influence on the measure 
of the quark fields. Since a typical calculation may involve hundreds or 
thousands of sweeps through the whole lattice, the simulation is practical 
only if the upgrade U~ ~ U~' can be done in microseconds. This is possible 
with today's most powerful supercomputers, exploiting their vectorized 
architecture. 

If one wants to take into account the dynamical effects of the quark 
fields, the situation becomes more complicated. The ~u, ~p variables are 
anti-commuting elements of a Grassman algebra rather than ordinary 
c numbers, and it is problematic to incorporate them directly in a 
simulation because, for space-time dimensionality larger than 2, one runs 
into negative probabilities. One can, however, perform the integration over 
d~Pdq u explicitly, since the measure is Gaussian in these variables, obtaining 

= Z  ~ f I~ dU~(O)ue-Scdet[D(U) +m] ( 0 )  
x,u (4) 

= f I-[ dU~ e -so det[D(U) + m] Z 
X,I  x 

where ( O ) v  stands for the expectation value of O(U, ~P, ~) over the quark 
fields at given background U~. 

The integration is now over the gauge field variables only, and it can 
be shown that the measure is positive-definite. However, the fermionic 
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determinant, which appears as a new factor in the measure and which 
accounts for the dynamical effects of the quarks, is a nonlocal function of 
the gauge variables Ux". An exact calculation of the variation of the deter- 
minant at each upgrading step UV~ ~ U~' is way too time-consuming for any 
lattice but those of the smallest size. 

It is an established fact that the most important properties of QCD 
emerge from the quantum fluctuations of the gauge field. This prompted an 
approximation, called the quenched (6) or valence (7) approximation, 
whereby the determinantal factor in the measure is neglected altogether. 
Neglecting the de t [D(U)+ m] factor in the measure corresponds to leaving 
out of the calculation all corrections induced by the creation and 
annihilation of virtual q - ~  pairs. One does not claim that the quenched 
approximation has no effect; there are certainly problems where the quan- 
tum mechanical fluctuations of the quark field play a crucial role, an exam- 
ple being the thermodynamical properties of the quark-gluon plasma. Also, 
in general, the relationship between lattice spacing and the unrenormalized 
coupling constant will be affected by the inclusion of virtual q - ~  
processes. The hope is, however, that for many problems, apart from the 
change of scale induced by the different renormalization, the inclusion of 
dynamical fermions may induce only corrections negligible in first 
approximation. 

Methods to incorporate the effects of the d e t [ D ( U ) + m ]  factor in 
Monte Carlo simulations have been proposed. (8) For lattices of realistic 
size this can be done only approximately, and the time per step increases 
very substantially anyway. 

The largest lattices have been considered in the context of the 
quenched approximation. One of the most fundamental problems of QCD 
is the calculation of the spectrum of masses from the first principles of the 
theory, and in the rest of my talk I shall concentrate on this problem since 
it exemplifies what can be achieved by numerical methods. 

One may pursue two different approaches, one likely to be more 
accurate but applicable only to the spectroscopy of heavy quark systems, 
the other of more general validity. One may use a lattice numerical 
calculation to evaluate the static potential, and possibly also its higher- 
order corrections, to be used in a Schr6dinger equation for the calculation 
of the bound states of heavy quarks. The static potential is derived from the 
numerical evaluation of the so-called Wilson loop factors, i.e., the expec- 
tation values of the transport factors obtained by multiplying the U 
variables along the sides of a rectangle of sides ma and na 

,u + 
Win, = (�89 tr(U~, + "" Ux+,~a"" U~+maa+(, 1)~''" U~x+(rn-l)~a "'" U~x)) 

(5) 
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It can be shown that Win , ,  which describes the variation of the 
vacuum-vacuum transition amplitude induced by a static q - ~  pair at 
separation m a  (identifying the m a  side with a space-like displacement and 
the na side with a time-like one), behaves for large n as 

Win.  ~ e - ~  V(m~) (6) 

V being the static q - q  potential. This allows one to extract V from a suf- 
ficiently accurate determination of W m , .  

The calculations of largest scale for the evaluation of the static poten- 
tial have been presented in Refs. 2, 3, 9, and 10). Figure 1 illustrates the 
results (the attractive force, rather than the potential, is displayed in the 
figure). The numerically determined potential has been used in Ref. 11 to 
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Fig. 1. A determination of the force between static q, ~] by Monte Carlo methods. The two 
symbols correspond to numerical results obtained with two different lattice actions, which 
should give the same value for the force in the continuum limit. The solid line represents a fit 
to the numerical data incorporating the expected behavior at short distances, which can be 
calculated from perturbative QCD. Units are in suitable powers of the string tension 

,~ (420 MeV) 2. 
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calculate properties of the J/~ and ~ families. The results obtained in 
Ref. 11 are reproduced in the table. The agreement between calculated 
values and experimental data is impressive. It is worth emphasizing that 
the entire calculation is from first principles, the heavy quark mass and an 
overall scale being the only parameters in the calculation. By considering 
the expectation value of more elaborate transport factors, namely for rec- 
tangular loops with space-like or time-like plaquette insertions, one can 
also calculate the spin-dependent potentials responsible for the fine and 
hyperfine splitings. Some preliminary results have been reported, and large- 
scale calculations are in progress. (12) 

Table  I. Results ( f r o m  Ref.  11 ) for  the  Spec t roscopy  of  the  J[4 and y 
fami l ies  ~ 

Mass (GeV) F (  e + e - )/1"( 1 S  ~ e + e - ) 

State (experiment) (experiment) <v2/c2> (r2> t/2 (fm) 

F ( 1 S  --* e+e ) = 6.17 keV (experiment:4.6 __+ 1.4keV) 

1S 3.10 (3.10) 1.00 0.20 0.40 
1P 3.51 (3.50) 0.22 0.62 
2S 3.69 (3.69) 0.48 (0.41 + 0.15) 0.26 0.79 
1D 3.80 (3.77) 0.25 0.81 
2P 3.96 0.29 0.97 
3S 4.11 (4.03 __+0.05) 0.34 (0.2) 0.32 1.12 
2D 4.19 (4.16 _+ 0.02) 0.32 1.13 
3P 4.34 0.35 1.27 
4S 4.48 (4.42 _ 0.01) 0.26 0.38 1.40 
3D 4.53 0.38 1.41 
5S 4.80 0.22 0.43 1.65 

F ( 1 S  ~ e+e ) = 1.17 keV (experiment: 1.22 +__ 0.03 keV) 

1S 9.46 (9.46) 1.00 0.070 0.23 
1P 9.87 (9.90) 0.064 0.39 
2S 9.99 (10.02) 0.47 (0.42 __+ 0.02) 0.072 0.50 
1D 10.11 0.068 0.53 
2P 10.22 (10.26) 0.076 0.64 
3S 10.33 (10.36) 0.35 (0.31 ___ 0.02) 0.083 0.73 
2D 10.41 0.081 0.75 
3P 10.51 0.088 0.85 
4S 10.60 (10.58) 0.29 (0.24 _+ 0.03) 0.095 0.94 
4P 10.75 0.099 1.04 
5S 10.84 (10.87) 0.26 0.107 1.11 

'~ m , .  = 1.70 GeV and m b = 5.07 GeV. 
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In a more direct approach to mass calculations one starts by 
evaluating Green's functions such as (for mesons) 

c , :  Y~ < ( g'~')~,,({~")o > (7) 

(spin indices are left implicit in this and subsequent equations.) 
Expanding into a complete set of intermediate states and recalling that 

the propagation is in Euclidean space-time, we may express GI in the form 

Gt = ~ l(nl ~qulo>lee  -m"' (8) 

~n_- o 

where we have also made use of the fact that the sum over final space 
positions in (7) projects over states of 0 spatial momentum, so that 
E(fi = O) = m. 

If one can calculate G with sufficient accuracy and for sufficiently long 
propagations in time so that the leading exponential behavior(s) can be 
isolated, then the mass(es) of the lowest state(s) in the channel with the 
quantum numbers of (~5 v) can be determined. 

G itself can be computed as average over configurations in the Monte 
Carlo sequence of suitable products of quark propagators 

1 io + n 
G t ~ -  ~ (gte.t~o){v},(gSo~.e.,>{v}~ (9) 

n i = i o +  l 

The most demanding part of the calculation becomes then the computation 
of the quark propagators themselves, which must be performed repeatedly 
and which requires solving the very large of simultaneous linear equations 

[D(U) + m]xy ( 9Fy ~o )  = 6~o (10) 

The task is made less severe by the fact that the matrix of the system is very 
sparse, so that iterative procedures such as the algorithm of conjugate 
gradients can be used very efficiently, and by the fact that the individual 
quark propagators themselves exhibit an exponential rate of decay (albeit 
modulated by irregular fluctuations) so that, at least for not too small 
quark masses and not too long propagations in time, a limited statistics 
may be sufficient to obtain reasonably accurate hadronic propagators. 

This approach has been pursued by many investigators, from the 
earliest investigations in Refs. 13, 14, 15 to the most recent large-scale 
calculations. ~ I would like to illustrate the method by presenting results 
obtained in collaboration with D. Barkai and K. Moriarty (5) working on a 
163x32 lattice at a value of the coupling parameter B=6/g  2, in the 

822/43/5-6-26 
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quenched approximation. This is the value of fl where one observes the 
onset of the continuum limit. 

Before presenting the actual results, I must mention that the so-called 
Kogut-Susskind or staggered formulation of lattice fermions has been used. 
In this lattice transcription of the Dirac equation different spin and flavor 
components of four degenerate species of quarks (16 components 
altogether) are assigned to the sites of a 2 4 cell of the lattice. This for- 
mulation offers the advantage that a continuous chiral symmetry is present 
for zero quark mass even at finite lattice spacing; moreover the thinning of 
degrees of freedom reduces substantially the dimensionality of the matrix of 
the linear system that must be solved for obtaining the quark propagators. 
A peculiarity of staggered fermions is that factors such as (-1)xl/a which 
change the sign from point to point of the 2 4 cell play the role of spin and 
flavor matrices. Moreover, the Green's functions must be expanded in 
terms of two contributions 

~ Ane-m"t+(-1)t/a~ A'ne -'"~ (11) 
n n 

where the two terms correspond to intermediate states of opposite parity. 
(On a finite lattice with periodic boundary conditions, reflected exponen- 
tials appear also in the expression for m, so that the expansion is in terms 
of hyperbolic cosines rather than exponentials). 
We used in our calculation values for the bare (Lagrangean) quark mass 
mqa = 0.5, 0.16, 0.09, 0.04, 0.01 and spin-flavor factors which allowed us to 
determine the masses of states with the following quantum numbers 

mesons: 0 -  +(n), 1 - -(p) ,  1 + + (A1), 0 + +(S) 

baryons: �89 (nucleon), �89 (A*, but with ms = mu = rod= mq) 

The results are illustrated in Figs. 2 and 3. Figure 2 shows that, especially 
for small quark masses, the mass of the state with the quantum numbers of 
the zc is proportional t o  mq 1/2, giving strong indication that chiral symmetry 
is dynamically broken with a massless Goldstone boson for zero quark 
mass even with finite lattice spacing. The behavior of all other masses as 
functions of m indicates instead that they tend to finite values for mq ---* O. It 
is also interesting to notice that whereas for large quark mass the mesons 
and baryons have masses in a ratio of 2/3, corresponding to additivity in 
the heavy quark mass (renormalized, however, from its Lagrangean value), 
for lower quark masses baryons and meson resonances have comparable 
masses, in agreement with experimental data. 

One can use the values of the rc and p masses to determine the overall 
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Mass  of the lowest  pseudo-sca la r  meson  versus square  root  of the qua rk  mass,  as 

ca lcu la ted  in Ref. 5. 

scale of the calculation (i.e., the value of the lattice spacing a) and the 
quark mass. This gives 

a -1 = 1659 + 134 MeV 
(12) 

M,,a ~ 2.0 MeV 

One then derives values for the other masses 

mAj = 1497 _+ 162 (exp 1275) MeV 

ms = 1063 _+ 79 (exp 975) MeV 

raN= 1073 _+91 (exp 939) MeV 

raN. = 1300 _+ 130 (exp 1405 - ~177 to account for m, = rnu = md) MeV 

and we see that the agreement between the calculated values and the 
experimental data is reasonably good. 

The numerical calculations such as the one described above are affec- 
ted by various errors, and it is important to be able to estimate their 
magnitude. Sources of error are the statistical errors, inherent in the 
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Fig. 3. 
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Masses of several hadrons: A*(�89 p,n (O), AI(1 ++) (+),  S(0 ++) ([]), 
p(1--)(x) ,  =(A ), as functions of the quark mass (from Ref. 5) 

simulation procedure. These are the most straightforward to estimate by 
standard methods of error analysis. There are then the errors induced by 
the finiteness of the lattice spacing and lattice volume (the ultraviolet and 
infrared cutoffs). Their magnitude can in principle be estimated by 
repeating the calculations on lattices of different sizes and with different lat- 
tice spacings (varied by varying the unrenormalized coupling constant), 
although it is not always practical to do so. Finally, the most insidious 
source of error may come from the use of the quenched approximation, i.e., 
the neglect of virtual q -  c] pairs. This can be checked only by performing 
calculations which incorporate the effects of dynamical fermions. Such 
calculations have been performed on lattices of smaller extent, especially in 
order to investigate chiral and finite temperature properties. (iv) Recently a 
calculation of the spectrum with dynamical fermions has also been 
made. (18) While one could obtain interesting information about the scale 
and general features of the spectrum, the errors are still too large to make a 
meaningful estimate of the errors induced by the quenched approximation. 
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These are years when the power and availability of computational 
resources are progressing at an outstanding pace. This augurs very well for 
the future. The numerical methods introduced by Prof. Metropolis have 
already produced many valuable results for field theories, and we look 
forward to many more important and impressive applications of such 
powerful computational tools. 
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